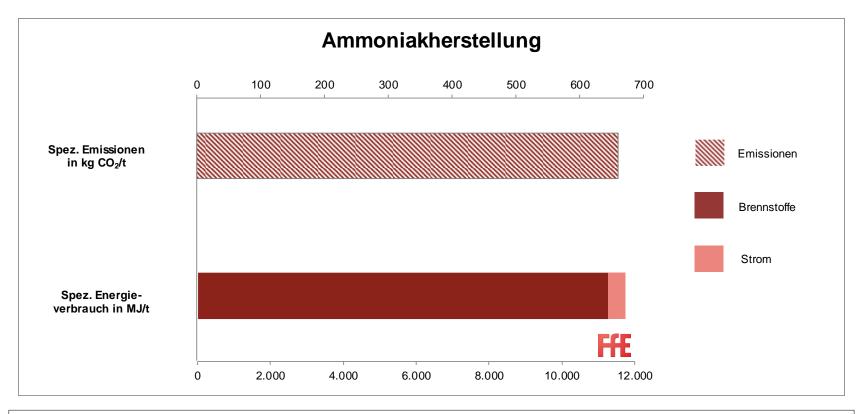


Prozessablaufdiagramm Ammoniakherstellung

Verfahren: Partielle Oxidation

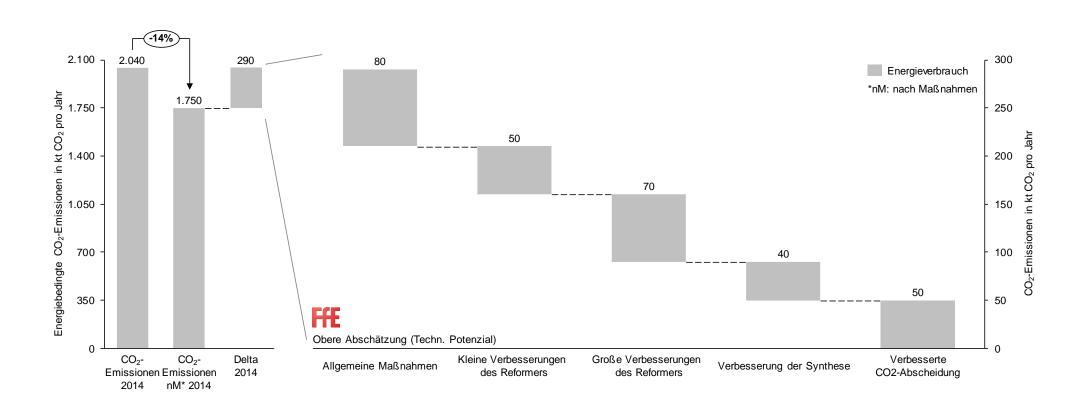
Prozessbeschreibung:


In Deutschland wird Ammoniak hauptsächlich aus Erdgas durch Dampfreformierung und partielle Oxidation aus anderen Kohlenwasserstoffen, insbesondere Schweröl und Destillationsrückständen, gewonnen.

Bei der Dampfreformierung wird dem Erdgas zunächst Schwefel entzogen. Anschließend wird es in einen Primärreformer gegeben, in dem unter hohen Temperaturen und Drücken (700 °C bis 800 °C bei 40 bar) Dampf zugeführt wird. Im Sekundärreformer wird Luft zugegeben. Der Output besteht hauptsächlich aus Wasserstoff und Kohlenmonoxid. Die anschließende Schichtumwandlung findet bei Temperaturen zwischen 200 °C und 400 °C statt, wobei Kohlenmonoxid in Kohlendioxid und Wasserstoff umgewandelt wird. Aus dem Gemisch wird das Kohlendioxid entfernt. Der kleine Teil des verbleibenden Kohlendioxids wird in Methan umgewandelt, um sicherzustellen, dass kein Kohlendioxid vorhanden ist, welches die Katalysatoren beschädigen kann.

Nach der Verdichtung des Synthesegases erfolgt die Ammoniaksynthese, wobei Stickstoff und Wasserstoff exotherm zu Ammoniak reagieren. Bei der Verwendung von anderen Kohlenwasserstoffen als Erdgas werden die ersten Reformer durch Vergaser mit Sauerstoff als Vergasungsmittel ersetzt. Anschließend wird der Schwefel aus dem produzierten Synthesegas entfernt. Dann wird Kohlendioxid entfernt und Stickstoff zugegeben. /ISI-05 13/, /UBA-06 01/

Spezifischer Energieverbrauch in MJ/t und spezifische CO₂-Emissionen in kg CO₂/t der Ammoniakherstellung



- Ammoniakproduktion in Deutschland: 3,1 Millionen Tonnen in 2014 /VCI-01 16/ und /ISI-05 13/
- Durchschnittlicher Energieverbrauch von 11.750 MJ pro Tonne Ammoniak in 2007 /ISI-05 13/
- Deckung des Energiebedarfs zu 96 % über Brennstoffe und zu 4 % über Strom /ISI-05 13/
- Rohstoff ist in Deutschland hauptsächlich Erdgas bzw. Methan mit ca. 67 % /ISI-05 13/. Der Rohstoff dient auch als Energieträger.
- Insgesamt endotherme Reaktion, aber Kombination aus endothermen und exothermen Reaktionen, überschüssige Wärme wird heutzutage für andere Prozessschritte oder zur Druckerzeugung verwendet. /ISI-05 13/
- Durchschnittliche energiebedingte CO₂-Emissionen von 756 kg pro Tonne Ammoniak in 2007 /ISI-05 13/
- Darüber hinaus prozessbedingte CO₂-Emissionen von 603 kg pro Tonne Ammoniak /ISI-05 13/

Auswirkungen quantifizierter CO₂-Verminderungsmaßnahmen auf die CO₂-Emissionen in der Ammoniakherstellung

Herleitung des maximalen technischen CO₂-Verminderungspotenzials der Effizienzmaßnahmen in der Ammoniakherstellung (1)

Kurzbezeichnung des Maßnahmenbündels	Beschreibung der Einzelmaßnahmen	Maximales technisches Potenzial und Zukunftsfähigkeit des Maßnahmenbündels
Allgemeine Maßnahmen /IER-04 05/, /IIP-01 18/, /EU- 04 07/	- Höhere Prozessintegration - Bessere Prozesssteuerung und –wartung	Maximales technisches Potenzial: <100 kt CO ₂ /a Herleitung: - Spez. Einsparpotenzial Energie: 2,22 GJ / Tonne Ammoniak - Anwendungsfaktor: 20 %
Kleine Verbesserungen des Reformers /ISI-05 13/, /IER-04 05/, /EU- 04 07/	 Erweitertes Vorwärmen der Rohstoffe Vorwärmen Verbrennungsluft Verringerung des Dampf/Kohlenstoff-Verhältnisses, Neuausrichtung der Konvektionsrohrschlange und Hinzufügen von neuen Wärmetauscherflächen Dampf zu C Verhältnis verringern, Strahlung erhöhen 	Maximales technisches Potenzial: <100 kt CO₂/a Herleitung: - Spez. Einsparpotenzial Energie: 1,4 GJ / Tonne Ammoniak - Anwendungsfaktor: 20 %
Große Verbesserungen des Reformers /IER-04 05/, /IIP-01 18/, /EU- 04 07/	- Gasturbine der 2. Generation - Modifizierung der Brenner im Ofen - Pre-reforming in Kombination mit einem geeigneten Dampfeinsparprojekt/ Adiabatischer Pre-Reformer - Substitution von Kohle- durch Erdgasturbinen - Abgaswärmerückgewinnung	Maximales technisches Potenzial: <100 kt CO₂/a Herleitung: - Spez. Einsparpotenzial Energie: 4 GJ / Tonne Ammoniak - Anwendungsfaktor: 10 %

Herleitung des maximalen technischen CO₂-Verminderungspotenzials der Effizienzmaßnahmen in der Ammoniakherstellung (2)

Kurzbezeichnung des Maßnahmenbündels	Beschreibung der Einzelmaßnahmen	Maximales technisches Potenzial und Zukunftsfähigkeit des Maßnahmenbündels
Verbesserung der Synthese /IER-04 05/, /IIP-01 18/, /EU- 04 07/, /ISI-05 13/	 Verwendung kleinerer Katalysatorenpartikel in der Ammoniak Synthese Niederdruck Katalysator Flüssig-Stickstoffwäscher im letzten Aufbereitungsschritt Indirekte Kühlung des Reaktors in der Ammoniak Synthese Wasserstoff-Rückgewinnung am Synthesegas Rückgewinnung des NH3 aus dem Prozesskondensat, z. B. durch Stripping Verwendung von Turboverdichtern in Verbindung mit Dampfturbinen Bessere Konfiguration des Ammoniak Synthese Reaktors 	Maximales technisches Potenzial: <100 kt CO₂/a Herleitung: - Spez. Einsparpotenzial Energie: 1 GJ / Tonne Ammoniak - Anwendungsfaktor: 25 %
Verbesserte CO ₂ - Abscheidung /IIP-01 18/, /EU-04 07/	- Verbesserte Katalysatoren - Energieeinsparungen durch Verwendung fortschrittlicher Lösungsmittel, Druckwechselabsorption oder verbesserter Membranen	Maximales technisches Potenzial: <100 kt CO₂/a Herleitung: - Spez. Einsparpotenzial Energie: 0,90 GJ / Tonne Ammoniak - Anwendungsfaktor: 30 %
Alle Maßnahmen	Summe der Maßnahmen	Maximales technisches Potenzial: ca. 300 kt CO ₂ /a

Quellen

BRUNK-01 16	Brunke, Jean-Christian: Energieeinsparpotenziale von energieintensiven Produktionsprozessen in Deutschland - Eine Analyse mit Hilfe von
	Energieeinsparkostenkurven. Dissertation. Herausgegeben durch die Universität Stuttgart - Institut für Energiewirtschaft und Rationelle Energieanwendung, geprüft
	von Voß, Alfred und Sauer, Alexander: Stuttgart, 2016.
DECHEMA-01 17	Bazzanella, Alexis et al.: Low carbon energy and feedstock for the European chemical industry. Frankfurt am Main: DECHEMA Gesellschaft für Chemische Technik und
	Biotechnologie e.V., 2017.
EU-04 07	Integrated Pollution Prevention and Control (IPPC): Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals -
	Ammonia, Acids and Fertilisers. Brüssel: Europäische Kommission, 2007.
FFE-13 17	Rasch, M.; Regett, A.; Pichlmaier, S.; Conrad, J.; Greif, S.; Guminski, A.; Rouyrre, E.; Orthofer, C.; Zipperle, T.: Eine anwendungsorientierte Emissionsbilanz -
	Kosteneffiziente und sektorenübergreifende Dekarbonisierung des Energiesystems in: BWK Ausgabe 03/2017, S. 38-42. Düsseldorf: Verein Deutscher Ingenieure
	(VDI), 2017
IER-04 05	Rafiqul, Islam et al.: Energy efficiency improvements in ammonia production - Perspectives and uncertainties. Stuttgart: Institute of Energy Economics and the
	Rational Use of Energy (IER), University of Stuttgart, 2005
IIP-01 18	The Institute for Industrial Productivity: Ammonia. In: http://ietd.iipnetwork.org/content/ammonia#technology-resources. (Abruf am 2018-05-17); (Archived by
	WebCite® at http://www.webcitation.org/6zUD4WSUv); Paris: The Institute for Industrial Productivity, Industrial Efficiency Database, 2018
ISI-05 13	Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang: Energieverbrauch und CO ₂ -Emissionen industrieller Prozesstechnologien - Einsparpotentiale, Hemmnisse
	und Instrumente in: ISI Schriftenreihe "Innovationspotentiale". Stuttgart: Fraunhofer-Institut für Systemtechnik und Innovationsforschung (Fraunhofer ISI), 2013
UBA-06 01	German Notes on BAT of the production of Large Volume Gaseous and Liquid Inorganic Chemicals. Dessau-Roßlau: Umweltbundesamt (UBA), 2001.
VCI-01 16	Chemiewirtschaft in Zahlen 2016. Frankfurt am Main: Verband der Chemischen Industrie e. V., 2016